
Operating Systems (Fall/Winter 2018)

Thread

Yajin Zhou (http://yajin.org)

Zhejiang University

Acknowledgement: some pages are based on the slides from Zhi Wang(fsu).

http://yajin.org

Review

• Process

• Multiple parts: text, CPU state, types of memory - stack, data, heap

• State: new, running, waiting, ready, terminated

• PCB: process control block - Linux/task_struct

• Context switch: save and restore context

• System calls: fork, exec, wait

• IPC: shared memory, message passing

• Message passing: blocking/non-blocking

• Pipe: ordinary pipe, named pipe

Motivation

• Why threads?

• multiple tasks of an application can be implemented by threads

• e.g., update display, fetch data, spell checking, answer a
network request

• process creation is heavy-weight while thread creation is light-
weight - why?

• threads can simplify code, increase efficiency

• Kernels are generally multithreaded

What is Thread

• A thread is an independent stream of instructions that can be scheduled to run as
such by the kernel

• Process contains many states and resources
• code, heap, data, file handlers (including socket), IPC
• process ID, process group ID, user ID
• stack, registers, and program counter (PC)

• Threads exist within the process, and shares its resources

• each thread has its own essential resources (per-thread resources): stack, registers,
program counter, thread-specific data…

• access to shared resources need to be synchronized
• Threads are individually scheduled by the kernel

• each thread has its own independent flow of control

• each thread can be in any of the scheduling states

Single and Multithreaded Processes

Thread and Process

one process
one thread

multiple processes
one thread per process

one process
multiple threads

multiple processes
multiple threads per process

Thread and Process

Thread
Control
Block

User
Stack

User
Stack

Kernel
Stack

Kernel
Stack

User
Address
Space

User
Address
Space

Process
Control
Block

Process
Control
Block

Thread

Single-Threaded
Process Model

Multithreaded
Process Model

Thread
Control
Block

User
Stack

Kernel
Stack

Thread

Thread
Control
Block

User
Stack

Kernel
Stack

Thread

Thread Benefits

• Responsiveness

• multithreading an interactive application allows a program to continue running
even part of it is blocked or performing a lengthy operation

• Resource sharing

• sharing resources may result in efficient communication and high degree of
cooperation. Threads share the resources and memory of the process by
default.

• Economy

• thread is more lightweight than processes: create and context switch

• Scalability

• better utilization of multiprocessor architectures: running in parallel

Multithreaded Server Architecture

NGINX Example

• Thread Pools in NGINX Boost Performance 9x

• nginx : master process + worker process

Source: https://www.nginx.com/blog/thread-pools-boost-performance-9x/

Concurrent Execution on a Single-core System

Parallel Execution on a Multicore System

Concurrency vs Parallelism

• Concurrency: 并发

• Parallelism: 并⾏行行

Concurrency

• Concurrent computing is a form of computing in which programs are
designed as collections of interacting computational processes
(注意：这⾥里里不不是os中的进程的概念) that may be executed in
parallel. Concurrent programs (processes or threads) can be
executed on a single processor by interleaving the execution steps
of each in a time-slicing way, or can be executed in parallel by
assigning each computational process to one of a set of processors
that may be close or distributed across a network.

• Programming as the composition of independently executing
processes. These processes are communicating with each other.
(Processes in the general sense, not Linux processes. Famously
hard to define.)

Source: http://talks.golang.org/2012/waza.slide

Parallelism

• Parallel computing is a form of computation in which many
calculations are carried out simultaneously, operating on the
principle that large problems can often be divided into smaller
ones, which are then solved “in parallel”.

• Programming as the simultaneous execution of (possibly related)
computations.

Source: http://talks.golang.org/2012/waza.slide

Concurrency is about structure, parallelism is about execution.
Concurrency provides a way to structure a solution to solve a problem

that may (but not necessarily) be parallelizable.

More gophers and more carts

Move a pile of obsolete language manuals to the incinerator.

Source: http://talks.golang.org/2012/waza.slide

Three gophers in action, but with likely delays.
Each gopher is an independently executing procedure,

plus coordination (communication).

Four gophers in action for better flow, each doing one simple task.
If we arrange everything right (implausible but not impossible), that's four times faster than

our original one-gopher design.

Source: http://talks.golang.org/2012/waza.slide

Concurrency

• We improved performance by adding a concurrent procedure to the existing
design.

• More gophers doing more work; it runs better. This is a deeper insight than
mere parallelism.

• Four distinct gopher procedures

• load books onto cart

• move cart to incinerator

• unload cart into incinerator

• return empty cart

• Different concurrent designs enable different ways to parallelize

Source: http://talks.golang.org/2012/waza.slide

We can now parallelize on the other axis; the concurrent design makes it easy. Eight
gophers, all busy

Source: http://talks.golang.org/2012/waza.slide

Another better design with a staging pile.

Source: http://talks.golang.org/2012/waza.slide

Implementing Threads

• Thread may be provided either at the user level, or by the
kernel

• user threads are supported above the kernel and
managed without kernel support

• three thread libraries: POSIX Pthreads, Win32
threads, and Java threads

• kernel threads are supported and managed directly
by the kernel

• all contemporary OS supports kernel threads

Kernel-Level Threads

• To make concurrency cheaper, the execution aspect of process is
separated out into threads. As such, the OS now manages threads
and processes. All thread operations are implemented in the
kernel and the OS schedules all threads in the system. OS
managed threads are called kernel-level threads

• In this method, the kernel knows about and manages the
threads. No runtime system is needed in this case. Instead of thread
table in each process, the kernel has a thread table that keeps
track of all threads in the system. In addition, the kernel also
maintains the traditional process table to keep track of processes.
Operating Systems kernel provides system call to create and
manage threads.

Source: http://www.cs.iit.edu/~cs561/cs450/ChilkuriDineshThreads/dinesh's%20files/User%20and%20Kernel%20Level%20Threads.html

Kernel-Level Threads

• Advantages

• Because kernel has full knowledge of all threads, scheduler may decide to
give more time to a process having large number of threads than process
having small number of threads.

• Kernel-level threads are especially good for applications that frequently block.

• Disadvantages

• The kernel-level threads are slow and inefficient. For instance, threads
operations are hundreds of times slower than that of user-level threads.

• Since kernel must manage and schedule threads as well as processes. It
require a full thread control block (TCB) for each thread to maintain
information about threads. As a result there is significant overhead and
increased in kernel complexity.

Source: http://www.cs.iit.edu/~cs561/cs450/ChilkuriDineshThreads/dinesh's%20files/User%20and%20Kernel%20Level%20Threads.html

User-Level Threads

• Kernel-Level threads make concurrency much cheaper than process because,
much less state to allocate and initialize. However, for fine-grained
concurrency, kernel-level threads still suffer from too much overhead. Thread
operations still require system calls. Ideally, we require thread operations to be
as fast as a procedure call. Kernel-Level threads have to be general to support
the needs of all programmers, languages, runtimes, etc. For such fine grained
concurrency we need still "cheaper" threads.

• To make threads cheap and fast, they need to be implemented at user level. User-
Level threads are managed entirely by the run-time system (user-level
library).The kernel knows nothing about user-level threads and manages
them as if they were single-threaded processes.User-Level threads are small
and fast, each thread is represented by a PC, register, stack, and small thread
control block. Creating a new thread, switching between threads, and
synchronizing threads are done via procedure call. i.e no kernel involvement. User-
Level threads are hundred times faster than Kernel-Level threads.

Source: http://www.cs.iit.edu/~cs561/cs450/ChilkuriDineshThreads/dinesh's%20files/User%20and%20Kernel%20Level%20Threads.html

User-Level Threads

• Advantages:

• The most obvious advantage of this technique is that a user-level threads
package can be implemented on an Operating System that does not support
threads.

• User-level threads does not require modification to operating systems.

• Simple Representation: each thread is represented simply by a PC, registers,
stack and a small control block, all stored in the user process address space.

• Simple Management: This simply means that creating a thread, switching
between threads and synchronization between threads can all be done
without intervention of the kernel.

• Fast and Efficient: Thread switching is not much more expensive than a
procedure call.

Source: http://www.cs.iit.edu/~cs561/cs450/ChilkuriDineshThreads/dinesh's%20files/User%20and%20Kernel%20Level%20Threads.html

User-Level Threads

• Disadvantages

• User-Level threads are not a perfect solution as with everything else, they are a trade
off. Since, User-Level threads are invisible to the OS they are not well integrated
with the OS. As a result, Os can make poor decisions like scheduling a process with
idle threads, blocking a process whose thread initiated an I/O even though the process
has other threads that can run and unscheduling a process with a thread holding a lock.
Solving this requires communication between between kernel and user-level
thread manager.

• There is a lack of coordination between threads and operating system kernel. Therefore,
process as whole gets one time slice irrespect of whether process has one thread or
1000 threads within. It is up to each thread to relinquish control to other threads.

• User-level threads requires non-blocking systems call i.e., a multithreaded kernel.
Otherwise, entire process will blocked in the kernel, even if there are runnable threads
left in the processes. For example, if one thread causes a page fault, the process
blocks.

Source: http://www.cs.iit.edu/~cs561/cs450/ChilkuriDineshThreads/dinesh's%20files/User%20and%20Kernel%20Level%20Threads.html

Multithreading Models

• A relationship must exist between user threads and kernel threads

• Kernel threads are the real threads in the system, so for a user
thread to make progress the user program has to have its
scheduler take a user thread and then run it on a kernel thread.

Many-to-One

• Many user-level threads mapped to a single kernel thread

• thread management is done by the thread library in user space
(efficient)

• entire process will block if a thread makes a blocking system call

• convert blocking system call to non-blocking (e.g., select in
Unix)?

• multiple threads are unable to run in parallel on multi-processors

• Examples:

• Solaris green threads

Many-to-One Model

One-to-One

• Each user-level thread maps to one kernel thread
• it allows other threads to run when a thread blocks
• multiple thread can run in parallel on multiprocessors
• creating a user thread requires creating a corresponding kernel thread

• it leads to overhead
• most operating systems implementing this model limit the number of

threads
• Examples

• Windows NT/XP/2000
• Linux

One-to-one Model

Many-to-Many Model

• Many user level threads are mapped to many kernel threads

• it solves the shortcomings of 1:1 and m:1 model

• developers can create as many user threads as necessary

• corresponding kernel threads can run in parallel on a
multiprocessor

• Examples

• Solaris prior to version 9

• Windows NT/2000 with the ThreadFiber package

Two-level Model

• Similar to many-to-many model, except that it allows a
user thread to be bound to kernel thread

Threading Issues

• Semantics of fork and exec system calls

• Signal handling

• Thread cancellation of target thread

• Thread-specific data

• Scheduler activations

Semantics of Fork and Exec

• Fork duplicates the whole single-threaded process

• Does fork duplicate only the calling thread or all threads for multi-
threaded process?

• some UNIX systems have two versions of fork, one for each semantic

• Exec typically replaces the entire process, multithreaded or not

• use “fork the calling thread” if calling exec soon after fork

• Which version of fork to use depends on the application

• Exec is called immediately after forking: duplicating all threads is not
necessary

• Exec is not called: duplicating all threads

Signal Handling

• Signals are used in UNIX systems to notify a process that a particular event
has occurred. It follows the same pattern
• a signal is generated by the occurrence of a particular event
• a signal is delivered to a process
• once delivered, the signal must be handled

• Signal is handled by one of two signal handlers
• default
• user-defined

• Every signal has default handler that kernel runs when handling signal
• User-defined signal handler can override default
• For single-threaded, signal delivered to process

Signal Handling

• A signal can be synchronous (exceptions) or
asynchronous (e.g., I/O)

• synchronous signals are delivered to the same
thread causing the signal

• Asynchronous signals can be delivered to:
• the thread to which the signal applies
• every thread in the process
• certain threads in the process (signal masks)
• a specific thread to receive all signals for the process

Thread Cancellation

• Thread cancellation: terminating a (target) thread before it has finished

• does it cancel the target thread immediately or later?

• Two general approaches:

• asynchronous cancellation: terminates the target thread
immediately

• what if the target thread is in critical section requesting resources?

• deferred cancellation: allows the target thread to periodically check
if it should be cancelled

• Pthreads: cancellation point

Thread Cancellation

• Pthread code to create and cancel a thread:

•

Thread Cancellation

• Invoking thread cancellation requests cancellation, but actual cancellation depends on
thread state (mode/state can be set using Pthread API)

• If thread has cancellation disabled, cancellation remains pending until thread enables it

• Default type is deferred

• Cancellation only occurs when thread reaches cancellation point

• i.e. pthread_testcancel()

• Then cleanup handler is invoked

• On Linux systems, thread cancellation is handled through signals

Thread Specific Data

• Thread-local storage (TLS) allows each thread to have its own copy
of data

• Useful when you do not have control over the thread creation process
(i.e., when using a thread pool)

• Different from local variables

• Local variables visible only during single function invocation

• TLS visible across function invocations

• Similar to static data

• TLS is unique to each thread

Lightweight Process & Scheduler Activations

• Lightweight process (LWP) is an intermediate data structure between the user and kernel
thread in many-to-many and two level models
• to the user-thread library, it appears as virtual processors to schedule user threads

on
• each LWP is attached to a kernel thread

• kernel thread blocks —> LWP blocks —> user threads block
• kernel schedules the kernel thread, thread library schedules user threads

• thread library may make sub-optimal scheduling decision
• solution: let the kernel notify the library of important scheduling events

• Scheduler activation notifies the library via upcalls
• upcall: the kernel call a upcall handler in the thread library (similar to signal)

• e.g., when a thread is about to block, the library can pause the thread, and schedule
another one onto the virtual processor

Lightweight Processes

Lightweight Processes

• In computer operating systems, a light-weight process (LWP) is a means of
achieving multitasking. In the traditional meaning of the term, as used in Unix
System V and Solaris, a LWP runs in user space on top of a single kernel thread
and shares its address space and system resources with other LWPs within the
same process. Multiple user level threads, managed by a thread library,
can be placed on top of one or many LWPs - allowing multitasking to be
done at the user level, which can have some performance benefits

• In some operating systems there is no separate LWP layer between kernel
threads and user threads. This means that user threads are implemented
directly on top of kernel threads. In those contexts, the term "light-
weight process" typically refers to kernel threads and the term "threads"
can refer to user threads. On Linux, user threads are implemented by
allowing certain processes to share resources, which sometimes leads
to these processes to be called "light weight processes”

Source: https://en.wikipedia.org/wiki/Light-weight_process

Review

• The motivation of using thread

• Responsiveness, resource sharing, economy, scalability

• Concurrency vs Parallelism

• Implementing Threads: kernel-thread, user-thread

• Thread Models

• Thread related issues

• fork/exec, signal handling, thread cancellation, thread specific data

• Lightweight process

Operating System Examples

• Windows Threads

• Linux Threads

Windows XP Threads

• Win XP implements the one-to-one mapping thread model
• each thread contains

• a thread id
• a register set for the status of the processor
• a separate user stack and a kernel stack
• a private data storage area

• The primary data structures of a thread include:
• ETHREAD: executive thread block (kernel space)
• KTHREAD: kernel thread block (kernel space)
• TEB: thread environment block (user space)

Windows XP Threads

Linux Threads

• Linux has both fork and clone system call

• Clone accepts a set of flags which determine sharing between the parent and children

• FS/VM/SIGHAND/FILES —> equivalent to thread creation

• no flag set no sharing (copy) —> equivalent to fork

• Linux doesn’t distinguish between process and thread, uses term task rather than thread

Linux Threads

Linux Threads

Thread Libraries

• Thread library provides programmer with API for creating and
managing threads

• Two primary ways of implementing

• library entirely in user space with no kernel support

• kernel-level library supported by the OS

• Three main thread libraries:

• POSIX Pthreads

• Win32

• Java

Pthreads

• A POSIX standard API for thread creation and
synchronization

• common in UNIX operating systems (Solaris, Linux,
Mac OS X)

• Pthread is a specification for thread behavior

• implementation is up to developer of the library

• e.g., Pthreads may be provided either as user-level
or kernel-level

Pthreads APIs

pthread_create create a new thread

pthread_exit terminate the calling thread

pthread_join join with a terminated thread

pthread_kill send a signal to a thread

pthread_yield yield the processor

pthread_cancel send a cancellation request to a thread

pthread_mutex_init initialize a mutex

pthread_mutex_destroy destroy a mutex

pthread_mutex_lock lock a mutex

pthread_mutex_unlock unlock a mutex

pthread_key_create create a thread-specific data key

pthread_key_delete delete a thread-specific data key

pthread_setspecific set value for the thread-specific data key

pthread_getspecific get value for the thread-specific data key

Pthreads Example

struct thread_info { /* Used as argument to thread_start() */
 pthread_t thread_id; /* ID returned by pthread_create() */
 int thread_num; /* Application-defined thread # */
 char *argv_string; /* From command-line argument */
};

static void *thread_start(void *arg)
{ struct thread_info *tinfo = (struct thread_info *) arg;
 char *uargv, *p;

 printf("Thread %d: top of stack near %p; argv_string=%s\n",
 tinfo->thread_num, &p, tinfo->argv_string);
 uargv = strdup(tinfo->argv_string);
 for (p = uargv; *p != '\0'; p++) {
 *p = toupper(*p);
 }
 return uargv;
}

Pthreads Example
int main(int argc, char *argv[])
{ …
 pthread_attr_init(&attr);
 pthread_attr_setstacksize(&attr, stack_size);

 /* Allocate memory for pthread_create() arguments */
 tinfo = calloc(num_threads, sizeof(struct thread_info));

 /* Create one thread for each command-line argument */
 for (tnum = 0; tnum < num_threads; tnum++) {
 tinfo[tnum].thread_num = tnum + 1;
 tinfo[tnum].argv_string = argv[optind + tnum];

 /* The pthread_create() call stores the thread ID into
 corresponding element of tinfo[] */
 pthread_create(&tinfo[tnum].thread_id, &attr,
 &thread_start, &tinfo[tnum]);
 }

 pthread_attr_destroy(&attr);

 for (tnum = 0; tnum < num_threads; tnum++) {
 pthread_join(tinfo[tnum].thread_id, &res);
 printf("Joined with thread %d; returned value was %s\n",
 tinfo[tnum].thread_num, (char *) res);
 free(res); /* Free memory allocated by thread */
 }

 free(tinfo);
 exit(EXIT_SUCCESS);
}

Win32 API Multithreaded C Program

Win32 API Multithreaded C Program

Java Threads

• Java threads are managed by the Java VM

• it is implemented using the threads model provided by underlying OS

• Java threads may be created by:

• extending the java.lang.Thread class

• then implement the java.lang.Runnable interface

HW4 is out!

